当前位置:首页 » 自动清洗 » 卫星是怎样计算时间和测距的
扩展阅读
怎样储存凯歌照片 2024-10-06 06:48:19
自动水壶怎样拔软管 2024-10-06 06:47:41
真爱手机怎样装鸿蒙系统 2024-10-06 06:28:08

卫星是怎样计算时间和测距的

发布时间: 2023-04-08 18:08:07

1. GPS定位卫星如何测量时间,经纬度,海拔高度

用户设备部分即GPS 信号接收机。其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。接收机硬件和机内软件以及GPS 数据的后处理软件包构成完整的GPS 用户设备。GPS 接收机的结构分为天线单元和接收单元两部分。接收机一般采用机内和机外两种直流电源。设置机内电源的目的在于更换外电源时不中断连续观测。在用机外电源时机内电池自动充电。关机后,机内电池为RAM存储器供电,以防止数据丢失。目前各种类型的接受机体积越来越小,重量越来越轻,便于野外观测使用。其次则为使用者接收器,现有单频与双频两种,但由于价格因素,一般使用者所购买的多为单频接收器。

我们通常所说的GPS往往仅只用户设备部分,它通过接受天空不同位置的三颗以上的卫星信号,测定手持机所在的位置,简单来说是利用了数学上三条线确定一个点的原理。

2. GPS(导航星全球定位系统)的工作是哪些

导航卫星是为地面、海上、空中和空间用户提供导航定位参数的应用卫星。导航卫星早期主要用于军事用户导航和定位。1959年12月美国首次发射子午仪导航卫星,而后又发射了两颗试验型子午仪卫星,取得了很大成功。1973年12月,美国国防部又制定搜漏了一个“导航星全球定位系统”(GPS)计划,目的是弥补子午仪卫星的不足,建立一个供各军种使用的统一的全球军用导航卫星系统,原计划15年完成。该系统由21颗实用卫星和3颗备缓纤用卫星组成,采取中高轨道,均匀分布在6个轨道面内,高度约20000千米,倾角63°。21颗卫星分为Ⅰ型和Ⅱ型,前者重460千克,后者重787千克。1978年7月22日,第1颗导航星发射,1993年10月26日,第21颗导航星发射,标志着该系统初步建成。1994年3月6日,第24颗导航星发射入轨,从而使这项历时20年、耗资上百亿美世哪烂元的导航星全球定位系统全部建设成功。导航星的定位精度在16米以内,测速精度优于0.1米/秒,计时精度优于120毫微秒(300万年误差1秒)。该系统对民用用户开放的通道定位精度较低,一般在100米左右。

定位常常是军用系统和民用系统需要解决的重要问题。飞船和返回式卫星在回收时,需要弄清落点精确位置。舰只在茫茫大海上航行需要知道自己的位置。发射洲际导弹需要时时跟踪它的位置、方向和速度。坦克部队在大沙漠上行动需要知道自己的方位。士兵在丛林中执行任务时要经常确定自己的位置。为保证运钞车的安全,银行也要通过实时确定它的位置和路线进行安全监视。如果知道丢失的车辆所在的地点,就可能迅速找回。导航星全球定位系统可以满足这些不同用户的复杂定位要求。它可为飞机、舰船、坦克、步兵、导弹、低轨卫星和各种民用用户提供全天候、连续、实时、高精度的位置、时间和速度的精确定位信息。

导航卫星定位的原理是时间测距和多普勒测速。导航星同步发出卫星星历表、时钟校正参数、信号延迟参数、卫星状态参数和识别信息等导航信号,用户接收机在某一时刻可同时接收4颗卫星发出的导航信号,接收机计算机根据卫星发送信号时间和电磁波的传播速度,可以算出用户相对于4颗卫星的距离(称伪距离)。以这4颗卫星为中心,以它们相对用户的距离为半径作4个球面,如果4个球面汇于一点,这个点就是用户的位置。否则就用导航星上的时钟校准接收机时钟,重复计算使球面汇于一点。这样用户的三维位置坐标(径度、纬度和高度)就确定了。通常用户在地球的任何位置至少能同时“看到”6颗以上的导航星,从中选出位置最佳的4颗进行连续的实时三维定位和测速。移动用户则根据接收导航信号频率的变化(多普勒频率)来计算自身运动的速度。获得的位置和速度信号在显示器上显示出来。

导航星全球定位系统是被动式导航定位系统,即用户只须接收卫星发出的信号而无须向卫星发射信号,因而接收装置可以做得非常小巧,一般在几千克左右。美国海湾战争中使用的接收机有的只有0.81千克,尺寸仅22×9×5厘米。

导航星全球定位系统不仅为美国三军提供导航服务,而且也已用于民用和移动通信服务。但两种用户严格分开,军用导航采用精确码;民用定位采用粗捕获码,且精度只有100米左右。美国政府1993年许诺,民用用户可以免费使用该系统10年。由于这个原因,90年代后,许多国家有大量公司在开发不同用途的导航星全球定位系统接收装置,应用领域遍及社会经济各个方面,GPS的开发和应用已形成前景十分广阔的技术产业。鉴于GPS系统取得的巨大成功,美国还计划对其进行改进和扩充,计划研制和发射51颗新的导航卫星组成规模更大、应用更加广泛的导航星全球定位系统。

3. 卫星到接收站利用测距码测量时间如何确定

你好:
我来给你科普下,接收机用测量码测量时有两个信号,春歼一个是接收到卫星的信号,另一个是接收机产生如悄的与卫星信号完全相同的复制扒橡冲信号。首先,卫星发出的信号传到接收机需要一个时间,接着,将复制信号放到延迟器里,做一个延迟处理,第三,当接收的信号与延迟器出来的信号完全对齐时,卫星信号的传播时间就等于复制信号在延迟器里做的延迟。

4. “科普”揭秘卫星星历及误差

一.什么是卫星星历,星历误差,及其定义与分类

卫星星历 :又称为两行轨道数据(TLE,Two-Line Orbital Element),由美国celestrak发明创立。

卫星星历是用于描述太空飞行体位置和速度的表达式———两行式轨道数据系统。卫星、航天器或飞行体一旦进入太空,即被列入NORAD卫星星历编号目录。列入NORAD卫星星历编号目录的太空飞行体将被终生跟踪。卫星、火箭残骸等飞行体成为太空垃圾时,仍被列入NORAD卫星编号目录,直到目标消失。卫星星历以开普勒定律的6 个轨道参数之间的数学关系确定飞行体的时间、坐标、方位、速度等各项参数,具有极高的精度。卫星星历能精确计算、预测、描绘、跟踪卫星、飞行体的时间、位置、速度等运行状态;能表达天体、卫星、航天器、导弹、太空垃圾等飞行体的精确参数;能将飞行体置于三维的空间;用时间立体描绘天体的过去、现在和将来。卫星星历的时间按世界标准时间(UTC)计算。卫星星历定时更新。

卫星星历可应用于军事、天文、航天、航天器的预测、定位、轨道、跟踪、测量和太空垃圾的计算、预测、描绘、跟踪。

卫星星历误差 :由星历所计算得到的卫星的空间位置与实际位置之差称为卫星星历误差。

卫星星历是由地面监控站跟踪监测卫星求定的。由于卫星运行中要受到多种摄动力的复杂影响,而通过地面监控站又难以充分可靠地测定这些作用力或掌握其作用规律,因此在星历预报时会产生较大的误差。在一个观测时间段内,星历误差属于系统误差,是一种起算数据误差。它不仅严重影响单点定位的精度,也是精密相对定位的重要误差来源。

星历误差可以近似地认为基线的相对精度近似地等于星历的相对精度(星历误差与高度 20200km之比).但严格而言,星历误差对基线的影响与卫星和基线的相对几何分布有关,很难具体估计其大小,当观测卫星数多于4颗时,星历误差的影响将大大地减小。

广播星历和精密星历卫星星历是GPS卫星定位中的重要数据。由卫星星历所给出的卫星位置与卫星的实际位置之差称为卫星星历误差。GPS卫星的广播星历是由全球定位系统的地面控制部分所确定和提供的,经GPS卫星向全球所有用户公开播发的一种预报星历,其精度较差。SA政策取消后,广播星历所给出的卫星的点位中误差为5~7m。

二.GPS卫星的广播星历及其误差

广播星历是定位卫星发播的无线电信号上载有预报一定时间内卫星根数的电文信息。

广播星历的精度是极不稳定的,它受星历年龄、轨道是否大谈调整、是否处于地球和月亮的阴影区等很多对用户而言是偶然因素的影响,即使设有SA政策,广播星历也可能会差于 1(Xhn,多观测一些卫星能提高精度。在求解CPS卫星轨道时,广播星历只起确定初值的作用,lOOm的精度完全足够了。但卫星运动力模型的误差将引起定出轨道的周期误差,在长距离定位时一般应采用精密星历或同时定轨。

广播星历误差是当前GPS定位的重要误差来源之一。美国SA政策取消后,GPS卫星的广播星历误差对GPS单点以滚核碰及对事后载波相位差分GPS数据精度的影响程度究竟如何,在缺乏数据的情况下只能依据相关资料所提供的估计值,通过理论分析和事后数据处理的方法对广播星历误差影响GPS单点及事后载波相位双差定位精度的程度展开研究。

三.精密星历

精密星历供卫星精密定位所使用的卫星轨道信息。精密星历是由若干卫星跟踪站的观测数据,经事后处理算得的供卫星精密定位等使用的卫星轨道信息。

精密星历是为满足大地测量、地球动力学研究等精密应用领域的需要而研制、生产的一种高精度的事后星历。目前的GPS精密星历主要有两种:由美国国防制图局(DMA)生产的精密星历以及由国际GPS服务IGS(International GPS Serv-ice)生产的精密星历。前者的星历精度约为2cm,后者的星历精度约为5cm。采用精密星历时应该注意,各个 GPS资料处理中心提供的精氏谈密星历尽管在数值上很接近,但由于各自采用的卫星运动力模 型不一致,可能会对基线解算产生系统性的差异。

四.有关星历误差分析及其改正

GPS广播星历的轨道误差分析

卫星星历是卫星定位的前提和基础,其轨道精度的好坏将直接影响定位的精度和结果。GPS广播星历虽然精度较精密星历低,但因为其具有实时、易获取的特点,已被众多实时导航和定位用户所广泛使用。David L.M. Warren、John F. Raquet对1993年到2002年期间的GPS广播星历的轨道精度情况进行了分析,得到了一些有益的结论。

2002年,为了提高GPS的定位精度,NGA(National Geospatial-Intelligence Agency)将AII的一些改进成果应用到主控站上,由NGA与JPO支持的这项计划最终成功实行,即L-AII(Legacy Accuracy Improvement Initiative)计划,它主要包括[4]:①将NGA观测站对GPS卫星进行跟踪观测的数据添加到卫星定轨、预报过程中,并且加入的观测站数目会不断增加,由开始6个站到最后11个站,使得所有的GPS卫星在任意时刻至少有一个地面跟踪站对其进行观测。而此前对GPS进行跟踪观测的只有OCS的5个监测站。②对卫星定轨/推估过程中所使用的动力学模型的改进,以及单区(single partition)定轨策略的实行。

在各机构的努力下,特别是L-AII计划的实施,广播星历的轨道精度有了很大的提高,从长期趋势中可以看到在三个方向上的偏差的日平均值都接近于0;对定位精度影响最大的径向误差的日均方根差由2002年的0.8m左右降低到了2006年的0.6m左右,径向误差以及法向误差也分别由2002年的4m、2.5m左右降低到了2006年的1.5m、0.9m左右;且在不考虑钟差的情况下,SISRE也由1m左右降低到接近于0.7m;到2006年底几乎所有卫星的三维偏差的RMS都达到了2m左右。可以期待的是在相关机构的进一步努力下,以及性能更为优异的新卫星的陆续升空,GPS的广播星历的轨道精度将会得到更进一步的提高。


GPS广播星历误差对单点定位的影响

在单点定位中,卫星星历误差对解箅结果影响较大.普通单点定位及精密单点定位的数学模型,通过广播星历及精密星历数据的解算,分析星历精度对单点定位的影响.计算结果表明,使用超快星历代替最终精密进行精密单点定位是可行的.

IGS精密星历的误差分析

采用高精度的ITRF2000全球参考框架、新的地球物理模型和误差改正模型、统一的卫星轨道参量和地球自转模型、统一的数据处理策略,重新处理了IGS全球跟踪站数据以求解1994—2004年的GPS卫星轨道。通过轨道比较评估了IGS精密星历的系统偏差和随机误差,发现IGS精密星历标称精度和实际精度存在差异,特别是早期结果。IGS精密星历在不同时期存在不同的系统偏差,主要由其在不同时期采用的不同ITRF序列参考框架之间的差异引起,IERS公布的转换参数不能完全表征ITRF序列间的差异。相对于重解精确轨道,IGS精密星历随机误差随时间逐渐减小,1994年为15—20cm,1998年逐渐减小到6 8cm,1998年以后小于5cm。

结语:本文通过对一些GPS基本知识的理解和相关文献的查找整理得出以上叙述,其中列举了较新的分析误差的理论方法及个人的观点,加深了对GPS相关误差的理解。

5. 卫星大地测量学的观测方法

按其内容有:以恒星为背景测量卫星方向,人造卫星激光测距,多普勒频移测量定位,卫星雷达测高等。
以恒星为背景测量卫星方向 利用卫星反射的太阳光或卫星上反射镜反射的激光束进行摄影,通过像片处理归算,即可求得摄影瞬间卫星所在的空间方向。由摄影测量求得的卫星方向的精度,在良好的条件下可以达到±0.3″。
方向观测法是60年代主要使用的方法,它的观测数据曾用于几何法建立空间三角网。由于观测精度不易再提高,而且可供观测的卫星和观测的机会较少,所以已很少使用。
人造卫星激光测距 用安置在地面站的卫星激光测距仪向卫星发射激光脉冲,并接收由卫星反射镜反射回来的脉冲,测量脉冲往返所经过的时间,从而计算测站至卫星的距离。60年代初,曾试验用激光技术测量从地面站到月球的距离。利用月面漫反射进行测距的尝试,未能取得令人满意的结果。以后随着带激光反射镜的人造卫星的出现,以及仪器的改进,测距精度不断提高。第一代激光测距仪用目视跟踪观测,测距误差为±2米;第二代为自动跟踪,误差为分米级;第三代的测距仪精度达到厘米级。
人造卫星激光测距仪的工作原理如图3。固体激光器所发射的激光脉冲,由取样电路截取其极小部分能量,经光电转换后形成一个基准信号,送至测时装置,作为计时的开门脉冲。激光脉冲的大部分由光学系统发射至卫星。卫星上的反射镜将脉冲反射回到地面,为接收系统所接收,并由光电倍增管转换为电脉冲,经放大、整形后送至测时装置作为计时的关门脉冲。激光脉冲往返于测距仪与卫星间的传播时间,由计数器记录下来,据以计算出测距仪至卫星的距离。
卫星激光测距仪分为固定式和流动式两类。前者安装在地面的固定测站上轿宏没,后者可安装在车辆上,具有高度机动性。两类测距仪的精度大致相同。
为了用计算机控制激光测距仪,使它自动跟踪卫星,须有精确的轨道预报。根据预报数据换算成观测时卫星的坐标,再计算出卫星的方位角、高度角和距离。输入计算机进行自动控制,跟踪卫星。
人造卫星激光测距技术已被广泛地应用于大地测量和地球动力学。70年代,地球和月球之间距离的测定有很大进展。月球激光测距除起到与卫星激光测距相同的作用外,还可以改善月球星历,推求地球引力参数GM。月球激光测距精度已达到±10厘米左右。
多普勒频移测量定位 多普勒频移测量的原理以多普勒效应为基础。装在卫星上的无线电发射机连续发射的电磁波频率为fs,地面站接收机所接收到的电磁波频率为fe。由于卫星对地面站的相对运动,根据多普勒效应有下列关系:
式中妆为卫星到地面站距离的变率,c为光速。引入接收机本地振荡频率f和卫星所发射电磁波波长λS=c/fS,上式写成如下形式: 由接收机将时间t1到t2的频移个数累加起来,亦即将闭纳上式求定积分,则有:式中N是接收机所记录的t1到t2之间频移个数。据此,即可由观测到的频移推算卫星至地面站的距离或距离变率。图4表示多普勒频移的变化情况。
为了提高精度,卫星发射两种相干频率,通过数据处理,可消除电离层影响的主要部分。多普勒频移测量可以全天候工作,且可以在较短时间内获得大量观测数据。
子午卫星系统,也称海军导航卫星系统(NNSS),就是利用多普勒测量原理进行导航和定位的一种典型的系统。该系统的子午卫星不断发射供多普勒频移测量用的电磁波信号,频率分别为150和400兆赫,在 400兆赫载波上调制有时间信号和计算卫星空间位置用的“广播星历”。地面测站上的多普勒接收机在观测多普勒频移的同时,也接收这些信息。利用观测到的多普勒频移,以及卫星的瞬间位置和测站坐标之间的数学关系,可以计算出测站的地心坐标。用以进行子午卫星多普勒测量的仪器称为多普勒接收机。
地面测站大约每隔一小时可以观测到子午卫星通过一次。一般观测40~50次,利用广播星历和单点定位技术求得的测站地心坐标,其精度约为±3~±5米。此外还可采用联测定位技术(在两个测站上对子午卫星进行同步观测)和短弧定位技术(多测站上对子午卫星进行同步观测)。这两种定位技术都可以削弱卫星的星历误差和大气折射的影响,但前者将卫星广播星历视为已知值,后者则将它作为观测量处理。采用这两种技术按广播星历计算,可将每两点之间相对位置的误差减小到 1米以内。美国还于事后计算1~2颗子午卫星的精密星历。根据这种星历和单点定位技术计算的测站地心坐标的误差也在±1米以内。
子午卫星多普勒定位法不受天气影响,所用仪器轻,操作简便,现在已成绝蔽为测定地面点地心坐标的主要方法。在天文大地网中,适当地测设多普勒测站,可以检核和改善网的质量,并把局部大地坐标系转换为全球统一的地心坐标系。卫星多普勒定位和地面水准测量结合,还可得出精度优于1米的相对高程异常。

6. GPS测量技术的原理是什么

GPS的原理是:天空上多个卫星同时发送信号,地面的接收装置与各卫星的距离不一样,到达的时间当然就不一样,利用时间差来计算出接收机的经纬度。

例如:你的左边和右边各有一个人,他们同时向你发出声音,左边的是1秒钟听到,右边的是2秒钟听到,也就是说左边的人距离你340米,而右边的人距离你680米,如果已知二个人的距离,就可以计算出你与左右二人的的距离。

GPS全球卫星定位系统由三部分组成:空间部分———GPS星座;地面控制部分———地面监控系统;用户设备部分———GPS 信号接收机。

GPS作为最新型的定位技术正在广泛的应用于军事、科学、汽车定位、及我们生活的手机定位等等,GPS的诞生使我们的生活发生了巨大的变化,科学研发也有了很大的突破,GPS使很多事情变的更精准化,工作效率化,GPS的灵活、方便使它的应用范围变的广泛起来。

(6)卫星是怎样计算时间和测距的扩展阅读:

GPS地面监控站主要由分布在全球的一个主控站、三个注入站和五个监测站组成。主控站根据各监测站对GPS卫星的观测数据,计算各卫星的轨道参数、钟差参数等,并将这些数据编制成导航电文,传送到注入站,再由注入站将主控站发来的导航电文注入到相应卫星的存储器中。

GPS用户设备由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。GPS接收机可捕获到按一定卫星高度截止角所选择的待测卫星的信号,跟踪卫星的运行,并对信号进行交换、放大和处理,再通过计算机和相应软件,经基线解算、网平差,求出GPS接收机中心(测站点)的三维坐标。

GPS方格网点位精度高、误差分布均匀,不但能够满足规范要求,而且具有较大的精度储备。

采用点位中误差作为方格网测量精度指标是可行的,它比用相对中误差表示精度指标更为合理。

采用GPS方法布设大地控制网,因其图形强度系数高,能够有效地提高点位趋近速度。网形优化比较方便。

采用GPS-RTK测设建筑方格网与常规测量法相比,效率可提高一倍以上,并能大幅度降低作业人员的劳动强度。一个参考站可有多台流动站作业,流动站不需基准站指挥,单人即可独立作业。

7. 宇宙中星球之间的距离是怎样才被计算出来的

雷达遥测(radar ranging)
精确决定地球与太阳平均距离(一天文单位,1 AU),是量测宇宙距离的基础。

由克卜勒定律 ,可以推算出金星与地球的最近距离约是0.28 A.U.。在金星最近地球时,用金星表面的雷达回波 时间,可找出(误差小于一公里)

1 AU = 149,597,870 公里≈1.5* 108 公里
测距适用范围:~1AU。

恒星视差法(stellar parallax)
以地球和太阳间的平均距离为底线,观测恒星在六个月间隔,相对于遥远背景恒星的视差 。恒星的距离d

d (秒差距,pc) = 1/ p (视差角,秒弧)
1 pc 定义为造成一秒视差角的距离,等于3.26 光年。地面观测受大气视宁度的限制,有效的观测距离约为100 pc (~300 光年)。在地球大气层外的Hipparcos 卫星与哈伯望远镜,能用视差法量测更远的恒星,范围可推广到1000 pc。

测距适用范围:~1,000 pc。

光谱视差法(spectroscopic parallax)
如果星体的视星等为mV,绝对星等MV,而以秒差距为单位的星体距离是d。它们间的关系称为距离模数

mV - MV = -5 + log10d
如果知道恒星的光谱分类 与光度分类 ,由赫罗图 可以找出恒星的光度。更进一步,可以算出或由赫罗图读出恒星的绝对星等,代入距离模数公式,即可以找出恒星的距离。

因为主序星的分布较集中在带状区域,所以光谱视差法常用主序星为标的。利用邻近的恒星,校准光谱视差法的量测。另也假设远处的恒星的组成与各项性质,大致与邻近恒星类似。误差常在25% 以上,。(注:本银河系直径约30 Kpc)

测距适用范围:~7Mpc。

例: 若某恒星的视星等为+15 ,其光谱判定为G2 V 的恒星‘i从赫罗图读出该星的绝对星等为+5 ,代入距离模数公式15 - 5 = 5 log d - 5 ,求出该星的距离d= 1000 pc = 3260 光年。

变星
位在不稳定带的后主序带恒星,其亮度有周期性的变化(周光曲线),而综合许多变星的周光关系,可以发现变星亮度变化周期与恒星的光度成正比(参见周光关系) 。用来做距离指标的变星种类主要有造父变星(I 型与II 型)与天琴座变星。

测定变星的光谱类别后,由周光图可以直接读出它庆饥的光度(绝对星等)。由变星的视星等和绝对星,利用距离模数公式,

mV - MV = -5 + log10d
即可定出变星的距离。目前发现,最远的造父变星 在M 100,距离我们约17 Mpc。

测距适用范围:~17 Mpc。

超新星
平均每年可以观测到数十颗外星系的超新星。大部份的超新星(I 型与II 型) 的最大亮度多很相近,天文学家常假设它们一样,并以它们做为大距离的指标。

以造父变星校准超新星的距离,以找出I 型与II 型星分别的平均最大亮度。由超新星的光度曲线 ,可以决定它的归类。对新发现的超新星,把最大视亮度(mV) 与理论最大绝对亮度(MV) 带入距离模数公式,即可找出超新星的距离。

II 型超新星受外层物质的干扰,平均亮度的不确定性较高,I 型超新星较适合做为距离指标。

测距适用范围:> 1000 Mpc。

Tulley-Fisher 关系
漩涡星系的氢21 公分线,因星系自转而有杜卜勒加宽 。由谱线加宽的程度,可以找出谱线的位移量Δλ,并求出星系的漩涡臂在视线方向的速度Vr,

Δλ/λo = Vr/c = Vsin i/c
i 为观测者视线与星系盘面法线的启李夹,由此可以推出漩涡星系的旋转速率。Tulley 与Fisher 发现,漩涡星系的光度与自转速率成正比,现在称为Tulley-Fisher 关系。

量漩涡星系的旋转速率,可以知道漩涡星系的光度,用距离模数公式,就可以找出漩涡星系的距离。Tulley-Fisher 关系找出的距离,大致与I 型超新星同级,可互为对照。

注:现常誉旁返观测红外线区谱线,以避免吸收。

测距适用范围:> 100 Mpc。

哈伯定律
几乎所有星系相对于本银河系都是远离的,其远离的径向速度可用都卜勒效应来测量星系的红位移 ,进而找出星系远离的速度。

1929年Edwin Hubble得到远离径向速度与星系距离的关系

哈柏定律

Vr = H*d
其中

Vr = 星系的径向远离速度

H = 哈柏常数=87 km/(sec*Mpc)

d = 星系与地球的距离以Mpc 为单位。

哈柏定律是一个很重要的距离指标,量得星系的远离速度,透过哈柏定律可以知道星系的距离。

例:

室女群(Vigro cluster) 的径向远离速度为 Vr =1180 km/sec, 室女群与地球的距离为 d = Vr/H = 1180/70 = 16.8 Mpc。
测距适用范围:宇宙边缘。

其他测距离的方法
红超巨星
假设各星系最亮的红超巨星绝对亮度都是MV = -8 ,受解析极限的限制,适用范围与光谱视差法相同。

测距适用范围:~7Mpc。

新星
假设各星系最亮的新星,绝对亮度都是MV = -8 。

测距适用范围:~20 Mpc。

HII 区
假设其他星系最亮的HII区之大小,和本银河系相当。(定H II区的边界困难,不准度很高)

行星状星云
假设星系行星状星云,光度分布的峰值在MV = - 4.48。

测距适用范围:~30 Mpc。

球状星团
假设星系周围的球状星团,光度分布的峰值在MV = - 6.5。

测距适用范围:~50 Mpc。

Faber-Jackson 关系、D-σ关系
Faber-Jackson 关系与Tulley-Fisher 关系类似,适用于椭圆星系。Faber-Jackson 关系:椭圆星系边缘速率分布宽度σ的四次方与星系的光度成正比。

D-σ关系:椭圆星系边缘速率分布宽度σ与星系的大小D 成正比。

测距适用范围:> 100 Mpc。

星系
假设其他更远的星系团,与室女星系团中最亮的星系都具有相同的光度MV = -22.83。
测距适用范围:~4,000 Mpc

8. 求助,关于GPS时间的计算

GPS接收机的时间一般是不准确的。接收机一般采用石英钟,误差很大。在实际测量中,把接收机钟差作为一个未知数,因此在观测时需要同时接收到至少四颗卫星的信号。然后利用卫星播发的导航电文计算出每颗卫星到接收机的距离。采用空间距离交汇的方法,计算出接收机的位置。定位的过程就是这样。不知道你说的GPS位置是什么意思,,GPS卫星的实时位置是已知的。然后时间的话就是接收到的时间加上卫星钟差就是GPS时钟的正确时间。。我就是这个专业的,都是原创,望采纳!!