① 高中生物必修二遗传密码的破译(选学)用学么,高考考么
不用学喔,不考
② 生物学上氨基酸的通式是怎么来的又是怎样通过每三个密码子变来的
氨基酸的结构通式,就是这个
氨基酸的结构通式与3位密码子,是没有关联的,密码子是科学家人工合成重复mRNA序列(例如—ACCACCACC—),放入含有核糖体的溶液中,分析合成的蛋白质序列,推理出每个3位密码子(3个碱基)对应的氨基酸。
氨基酸的结构通式是分析氨基酸的结构,发现的共通点。
③ 遗传密码字典的查法是怎样的
遗传密码字典,这部特殊的字典的查法,是先取左边第一碱基一个字母,再取上面第二碱基的一个字母,最后取右边第三碱基的一个字母,合起来就是一个氨基酸。例如CUU代表亮氨酸,AAG代表赖氨酸,GAG代表谷氨酸,AAU代表天冬氨酸等。更有趣的是,密码里还有句号,用来表示氨基酸连成一个段落。借助这部生物字典,我们可以翻译下列一段密码:GCA丙氨酸、AAC天冬酰胺、UCC丝氨酸、GGU甘氨酸、AUC异亮氨酸、UAC酪氨酸、UAA句号、UAG句号、GGA甘氨酸、UUA亮氨酸、CCC脯氨酸、AUG甲硫氨酸、UCG丝氨酸、AAG赖氨酸、ACA苏氨酸、AAG赖氨酸。原来,它就是噬菌体R身上部分遗传密码。这部生物“字典”,即适用于从细菌到人类的一切生物。
④ 遗传密码的破译究竟指的是什么
1953年,沃森和克里克弄清 DNA的双链双螺旋结构之后,分 子生物学像雨后春笋蓬勃发展。 许多科学家的研究,使人们基本 了解了遗传信息的流动方向: DNA→信使RNA→蛋白质。也就是 说蛋白质由信使RNA指导合成, 遗传密码应该在信使RNA上。 基因密码的破译是六十年代 分子生物学最辉煌的成就。先后 经历了五十年代的数学推理阶段 和1961-1965年的实验研究阶段。 1954年,物理学家George Gamov根 据在DNA中存在四种核苷酸,在 蛋白质中存在二十种氨基酸的对 应关系,做出如下数学推理:
⑤ 遗传密码是怎样破译的
1953年,沃森和克里克弄清DNA的双链双螺旋结构之后,分子生物学像雨后春笋蓬勃发展。许多科学家的研究,使人们基本了解了遗传信息的流动方向:DNA→信使RNA→蛋白质。也就是说蛋白质由信使RNA指导合成,遗传密码应该在信使RNA上。 基因密码的破译是六十年代分子生物学最辉煌的成就。先后经历了五十年代的数学推理阶段和1961-1965年的实验研究阶段。 1954年,物理学家George Gamov根据在DNA中存在四种核苷酸,在蛋白质中存在二十种氨基酸的对应关系,做出如下数学推理:如果每一个核苷酸为一个氨基酸编码,只能决定四种氨基酸(41=4);如果每二个核苷酸为一个氨基酸编码,可决定16种氨基酸(42=16)。上述二种情况编码的氨基酸数小于20种氨基酸,显然是不可能的。那么如果三个核苷酸为一个氨基酸编码的,可编64种氨基酸(43=64);若四个核苷酸编码一个氨基酸,可编码256种氨基酸(44=256),以此类推。Gamov认为只有43=64这种关系是理想的,因为在有四种核苷酸条件下,64是能满足于20种氨基酸编码的最小数。而44=256以上。虽能保证20种氨基酸编码,但不符合生物体在亿万年进化过程中形成的和遵循的经济原则,因此认为四个以上核苷酸决定一个氨基酸也是不可能的。1961年,Brenner和Grick根据DNA链与蛋白质链的共线性(colinearity),首先肯定了三个核苷酸的推理。随后的实验研究证明上述假想是正确的。 1962年,克里克用T4噬菌体侵染大肠杆菌,发现蛋白质中的氨基酸顺序是由相邻三个核苷酸为一组遗传密码来决定的。由于三个核苷酸为一个信息单位,有4^3=64种组合,足够20种氨基酸用了 破译密码的竞赛中,美国的尼伦伯格博士走在前面。他用严密的科学推理对蛋白质合成的情况进行分析。既然核苷酸的排列顺序与氨基酸存在对应关系,那么只要知道RNA链上碱基序列,然后由这种链去合成蛋白质,不就能知道它们的密码了吗?用仅仅含有单一碱基的尿嘧啶(U),做试管内合成蛋白质的研究。合成蛋白质必须将DNA上的遗传信息转录到RNA上,而RNA的碱基与DNA稍有不同,一般是有UCGA4种(DNA中是TCGA)。这个实验只用了含有单一碱基U的特殊RNA。这样,就得到了只有UUU编码的RNA。把这种RNA放到和细胞内相似的溶液里,如果上述观点正确,应该得到由单一一种氨基酸组成的蛋白质。这样合成的蛋白质中,只含有苯丙氨酸。于是,人们了解了第一个蛋白质的密码:UUU对应苯丙氨酸。随后,又有人用U—G交错排列合成了半胱氨酸—缬氨酸—半胱氨酸的蛋白质,从而确定了UGU为半胱氨酸的密码,而GUG为缬氨酸的密码。这样,人们不仅证明了遗传密码是由3个碱基排列组成,而且不断地找出了其他氨基酸的编码。 进一步研究发现,不论生物简单到只一个细胞,还是复杂到与人一样高等,他的遗传密码是一样的。也就是说,一切生物共用一套遗传密码。
⑥ 怎么破译遗传密码
任何一种天然多肽链都有其特定的氨基酸顺序。mRNA中的核苷酸的排列顺序决定着蛋白质分子中氨基酸的排列顺序。mRNA分子中的核苷酸只有四种,而组成蛋白质的氨基酸有20种。四种核苷酸怎样排列组合才能代表20种氨基酸呢?用数学方法推算,如果mRNA分子中每三个相邻核苷酸决定一个氨基酸,则能编码出64组密码(43=64),可以满足20种氨基酸编码的需要。实验证明确实是这样,在mRNA链上相邻的三个碱基为一组,称为密码子或三联体密码,起着编码一种氨基酸的作用。
遗传密码的概念是M.Nirenberg等人在1964年首先提出来的,他们以大肠杆菌的无细胞体系为材料,给予20种放射性同位素标记的氨基酸,以聚U作为mRNA,经保温后,发现只有苯丙氨酸(Phe)掺入到酸不溶性部分的多肽中,即新合成了一条多聚苯丙氨酸肽链,从而提出UUU三个碱基是编码苯丙氨酸的三联体密码。与此同时,Khorana人工合成了具有两个核苷酸重复序列的多核苷酸,进行体外蛋白质合成。如聚UG、聚AC作为mRNA,合成了两个相邻氨基酸残基交替重复出现的Cys-Val和Thr-His多肽链,即
Poly(UG):UGUGUGGUGUGUGUG翻译成:Cys-Val-Cys-Val-Cys-Val……
Poly(AC):ACACACACACACCAC
翻译成:Thr-His-Thr-His-Thr-His……
若以人工合成的三核苷酸重复排列形成的mRNA,如用polyUUC作模板,可翻译出三种由单一的氨基酸残基组成的多肽链,这是由从不同的碱基开始阅读密码所引起的。
Poly(UUC):
UUCUUCUUCUUCUUCU……翻译成poly(Ser)
UUCUUCUUCUUCUUCUU……翻译成poly(Lcu)
若以polyUAA、polyUGA和polyUAG为模板时,因为遇到终止密码UAA、UGA和UAG,仅能生成两种单一氨基酸残基组成的多肽。
应用上述类似的方法于1966年完全查清了20种氨基酸所对应的61个密码子,其余三个密码子为终止密码子。密码子的阅读方向为5′→3′。
⑦ 基因和遗传密码是从何而来的
应该是从人本的一些组织细胞中检测出来的吧,人类的染色体是由XY组织的,或者是用科学的编组分析得的。
前些年,在河北保定召开的国际欧亚科学院院士第一次讲座上,陈润生说:“经过近30年人类遗传密码的确定,全世界科学家对遗传密码的解释能力不超过3%。”中国科学院生物物理研究所研究员、中国科学院院士表示,目前仍有97%的遗传密码可以测量,但没有人能很好地解释,这其中蕴含着很多原创创新的机会。
一个人的遗传密码怎样才能得出准确的结果,只有用一系列的繁杂计算才能给出答案。基因密码就像一座科学尚未突破的巨塔。在这些尚未突破的困难中,有无限的创新机会。