当前位置:首页 » 电脑办公 » 怎样求一个函数的反函数ppt
扩展阅读
怎样闷猪脚好吃 2025-01-16 21:33:19

怎样求一个函数的反函数ppt

发布时间: 2022-11-13 19:45:54

Ⅰ 怎样求一个函数的反函数

一、判断反函数是否存在:

由反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同:

1、先判读这个函数是否为单调函数,若非单调函数,则其反函数不存在。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点 x₁ 和 x₂ ,当 x₁<x₂ 时,有 y₁<y₂ ,则称y=f(x)在D上严格单调递增;当 x₁<x₂ 时,有 y₁>y₂,则称 y=f(x) 在D上严格单调递减。

2、再判断该函数与它的反函数在相应区间上单调性是否一致;

满足以上条件即反函数存在。

二、具体求法:

例如 求 y=x^2 的反函数。

x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。

(1)怎样求一个函数的反函数ppt扩展阅读:

反函数的相关性质:

(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

(2)一个函数与它的反函数在相应区间上单调性一致;

(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

(4)一段连续的函数的单调性在对应区间内具有一致性;

(5)严增(减)的函数一定有严格增(减)的反函数;

(6)反函数是相互的且具有唯一性;

(7)定义域、值域相反对应法则互逆(三反);

Ⅱ 一个函数的反函数应该怎样求

把x化成y,y化成x后,即为x=多少y,然后进行各种运算,完成字母间的转换,化成y=多少x即可,此时得到的式子则为原函数的反函数!
加例:y=5+√(x+3)的反函数为x=5+√(y+3),该式化简为(x-5)=√(y+3)即y=(x-5)∧2-3为所求反函数.谢谢…哦,还有原来的定义域成为了反函数的值域,原来函数的值域是其反函数的定义域^_^

Ⅲ 如何求已知函数的反函数

求一个函数的反函数方法分三步

  1. 反解x,

  2. 对换x,y

  3. 求定义域。反函数的定义域是原函数的值域

    y=2^x -----x=log2(y)-----y=log2(x) (x>0)

    函数与反函数的图像关于y=x对称

Ⅳ 怎么求反函数求详细讲解,

1. 反函数存在的条件。对于任意一个函数y=f(x),不一定有反函数。如y=x2 (x∈R),由y=x2,解得 ,对于每一个确定的函数值y,有两个x值与之对应,不符合函数定义,所以y=x2(x∈R)没有反函数。不难发现,只有当函数y=f(x)的对应法则f是从定义域到值域的一一映射时,它才存在反函数。函数若存在反函数,它的反函数是唯一的。

2. 反函数也是函数。一个函数与它的反函数互为反函数,并且它们的定义域、值域互换,对应法则互逆。一个函数与它的反函数可以是两个不同的函数,也可以是同一个函数。如函数
3. 在反函数概念的学习中,先后出现了三个函数记号——y=f(x),x=f-1(y),y=f-1(x),它们之间的关系是:在y=f(x)与x=f-1(y)中,字母x,y所表示的数量相同,取值范围相同,但地位不同。在y=f(x)中,x是自变量,y是x的函数;在x=f-1(y)中,y是自变量,x是y的函数。y=f(x)与x=f-1(y)互为反函数,它们的图象相同(由于两式中x,y所表示的量完全相同)。

在y=f(x)与y=f-1(x)中,字母x,y的地位相同,即x是自变量,y是x的函数,但x,y表示的量的意义变换了,取值范围也互换了,即y=f(x)中x(或y)与y=f-1(x)中的y(或x)表示相同的量。y=f(x)与y=f-1(x)互为反函数,它们的图象关于直线y=x对称。

在y=f-1(x)与x=f-1(y)中,字母x,y的地位及其表示的量互相交换,但它们却是同一函数,都是y=f(x)的反函数。函数x=f-1(y)与y=f-1(x)是同一函数的理由是:它们的定义域相同,值域相同,对应法则一样。

4. 反应函数的性质主要有:

(1)互为反函数的两个函数的图象关于直线y=x对称;

(2)函数存在反函数的充要条件是,函数在它的定义域上是单调的;

(3)一个函数与它的反函数在相应区间上单调性一致;

(4)偶函数一定不存在反函数,奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数;

,其中A、C分别为函数f(x)的定义域、值域。

反函数的求法。
注意不要把f-1(x)理解为 ,防止把求反函数混为求倒数。f-1(x)表示f(x)的反函数,式子中的f-1表示对应法则,它与原来函数f(x)中的对应法则是互逆的关系。求反函数的过程主要是“解方程”的过程,即将y视为常数,将x看作未知数,用解方程的方法解出x=f-1(y),此时一定要注意表达式的唯一性。再将x,y的位置交换,得y=f-1(x)。求出式子y=f-1(x)后,一般还要注明反函数的定义域。由于反函数的定义域必须与原来函数的值域相同,由式子f-1(x)确定x的取值范围未必合适(原因是在解方程的过程中,可能出现非同解变形),因此,标注反函数的定义域很有必要,而且须结合原来函数的值域确定反函数的定义域。例如,函数 的反函数的解析式为y=(x-1)2,由于原来函数的值域是y≥1,故反函数的定义域是x≥1,而不能是x∈R。求反函数的解题步骤可概括为“一解二换三注”。

Ⅳ 怎样求反函数啊

反函数定义
般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y).若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x).反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
反函数性质
1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数.).奇函数不一定存在反函数.被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】.(8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 y=3x-2的定义域为R,值域为R.由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\[F’(Y)]'.
反函数说明
⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式.⑵反函数也是函数,因为它符合函数的定义.从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f’(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数.⑶互为反函数的两个函数在各自定义域内有相同的单调性.单调函数才有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数.⑷ 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f’(x)的值域;函数y=f(x)的值域正好是它的反函数y=f’(x)的定义域(如下表):函数:y=f(x) 反函数:y=f’(x) 定义域:A C 值域:C A ⑷上述定义用“逆”映射概念可叙述为:若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数y=f’(x)就叫做函数y=f(x)的反函数.反函数y=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域.开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f’(s)=s/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3.有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的.一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a
直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的:1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域.实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身.反函数求解三步骤:1、换:X、Y换位 解出Y 3、标:标出定义域

Ⅵ 函数反函数的求法

简单地说,反函数就是从函数y=f(x)中解出x,用y表示 :x=φ(y),如果对于y的每一个值,x都有唯一的值和它对应,那么x=φ(y)就是y=f(x)的反函数,习惯上,用x表示自变量,所以x=φ(y)通常写成y=φ(y) (即对换x,y的位置).求一个函数的反函数的步骤:(1)从原函数式子中解出x用y表示;(2)对换 x,y ,(3)标明反函数的定义域如:求y=√(1-x) 的反函数注:√(1-x)表示根号下(1-x)两边平方,得y²=1-xx=1-y²对换x,y 得y=1-x²所以反函数为y=1-x²(x≥0) 注:反函数里的x是原函数里的y ,原函数中,y≥0,所以反函数里的x≥0 在原函数和反函数中,由于交换了x,y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域.

Ⅶ 怎么求函数的反函数

求反函数的方法:

(1)从原函数式子中解出x用y表示;

(2)对换 x,y ,

(3)标明反函数的定义域

如:求y=√(1-x) 的反函数

注:√(1-x)表示根号下(1-x)

两边平方,得y²=1-x

x=1-y²

对换x,y 得y=1-x²

所以反函数为y=1-x²(x≥0)

说明:

反函数里的x是原函数里的y ,原函数中,y≥0,所以反函数里的x≥0。

在原函数和反函数中,由于交换了x,y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

Ⅷ 怎样求反函数

找到一个单调区间,此区间即是烦函数的定义域
把函数看作方程: y=f(x)
解方程,求出x用y标识的表达式,x=f^(-1)(y)
将x,y互换即得反函数表达式: y=f^(-1)(x)
例如:求 y=3x+5的反函数,函数在(-∞, +∞)内单调,值域为:(-∞, +∞)
∴ 所以反函数的定义域为:(-∞, +∞),值域为:(-∞, +∞)
由 y=3x+5 解得:x=1/3*y-5/3
∴ 反函数为: y=1/3*x-5/3 x∈(-∞, +∞)